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Practical Three-Dimensional Profiling of Optical
Fiber Preforms

PIERRE-LUC FRANCOIS, ISSEI SASAKI, AND M. J. ADAMS

Abstract–The spatiaf filtering technique has been used in the practicaf

implementation of three-dimensionaf profile reconstruction for preforms

of arbitrary cross section. An interpolation algorithm has been developed

which enables accurate three-dimensional profiles to be obtained with a

relatively modest number of azimuthaf projections of the preform. With
the aid of this algorithm it has been found, for both simulated and mea-

sured profiles, that for the majority of near-circular preforms only three

projections need to be used; the storage requirements are now within

the range of a minicomputer and the procedure is thus a practicaf tool

for routine preform assessment.

I. INTRODUCTION

T HERE has recently been great interest in the develop-

ment of nondestructive methods for accurately deter-

mining the refractive index profile in optical fiber preforms.

Such methods usually involve the numerical inversion of the

deflection function of the preform, i.e., the deflection angle of

a ray in traversing the preform cross section as a function of

the radial position of the ray and of the preform orientation

[1]. The spatial filtering technique [2] has recently been

shown to, allow a quick and highly accurate measurement of

the deflection function [3]. In this method a parallel beam of

light illuminates the preform transversely and a rotating chopper

converts the light deflection into measurable time-domain sig-

nals. Performing this measurement for several preform orienta-

tions permits three-dimensional reconstruction of the profiles

for preforms of arbitrary cross section. The exceedingly large

amount of data usually required for such reconstruction has

been reduced by the development of a new interpolation algo-

rithm which requires only a few azimuthal projections of the

preform. The present paper describes this algorithm, analyzes

the achievable accuracy, and gives results of three-dimensional

reconstruction obtained for simulated and real preform profiles

exhibiting a wide range of departures from circularity.

11. THEORY

Consider the situation of Fig. 1 where a preform of index

profile n(x, y), immersed in a matching fluid of refractive

index no, is illuminated at an angle 0 by a parallel beam of

light.
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A. Review of the Reconstmction Algorithms

The well-known tomographic problem of determining a func-

tion f (x, y), knowing the integrals If(L) = JL f (x, y) ds of

f(x, y) along certain paths L, was first applied by Chu to optical

fibers and preforms [1] . In this case f(x, y) = n(x, y) - no

and the integral If(L) is the optical path length difference

q (p, 0) between a ray traversing the path AB through the pre-

form and an imaginary ray traversing the same path but in the

index matching fluid

J
T(p, O) = (n(x, y) - no) ds (1)

L

where the line L is the geometrical path All followed by the

ray (Fig. 1).

The main hypothesis of the reconstruction is to assume that

the optical fiber or preform may be regarded as a phase object

[1]. This implies a perfect index match between the matching

fluid and the fiber (or preform) cladding and also that we can

approximate the actual ray trajectory AB by the straight line

JIB’ (Fig. 1); the latter hypothesis is justified for the usual

range of relatively small numerical apertures encountered in

practice. The straight line AB’ is defined, as shown in Fig. 1,

by the direction O of the ray and the distance p = OH1.

In polar coordinates (r, 4), the index difference (n (r’, +) - no)

of the reconstructed profile is then expressed in the following

form [1] :

1
lrp

Jv +-?lq(p, 0)
n(r, ~) - no =— de

2ri2
-77/2 -~

ap

dp
(2)

“rsin(J -0)-p”

For a detailed derivation of (2), we refer the reader to [1]

where there is also an evaluation of the errors due to the ray

curvature and to the index mismatch between the matching

fluid and the cladding.

Equation (2) can be applied to both fibers and preforms; in

the latter case, the path length difference ~ (p, 19) is difficult

to measure and one uses the deflection @(p, 0) experienced by

the ray AB (Fig. 1). @(p, 0) can be obtained quickly and with

high accuracy by the spatial-filtering technique reported else-

where [2] , [3] d~(p, 0)/dp is then calculated numerically

from @(p, 0) by the relation [4]
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Y of (7). This convolution is best performed by the use of one-
Y dimensional FFT’s [1].

3) For each point (r, J) the normalized index difference is

obtained by numerical integration of (6), in which the values

of g(z, 6) are needed for N1 values of O. The determination of

A NI will be discussed later.

For the special case of perfectly circular preforms, the ex-

plicit O-dependence of q(p, 0) and @(p, 0) disappears and we

have two reconstruction equations, depending on whether we

use either the path length difference ~(p) or the deflection
1

Fig. 1. Ray path AB through a preform cross section, illustrating the

straight line approximation AB’. Solid line: actual ray path. Broken
line: phase object approximation for the ray path.

~pfl=~04W410-no$ [FM(P,0)- Ztan [f#I(P,@l1

(3)

where 1= OH2 in Fig. 1.

As the deflection assumes very small values in practice, $(P, 6)

differs only slightly from tan [@(p, 6)] and the path length

difference q(p, 6) is related to the deflection @(p, 0) in a very

simple way [5] :

aq(p,0)

ap = ~ow> o (4)

The approximation of (4), substituted into (2), gives the basic

reconstruction expression for the normalized index difference:

(5)

or, in the notation of [1]

+ ??/2
rr(r, +) - no 1.—

1
dOg(z, ‘) lz=rsin(~ ‘0)

2rr2
(6)

no - ‘7r/2

where

J
+-

g(z, o) = _m @(P>e)~= P’”)”:l(z)‘7)
In (7) the asterisk denotes the convolution between @and

1/p; in (6) z = r sin (1 - 0) is substituted in g(z, O). A more

rigorous formulation of(5)-(7) is given in Appendix A.

The reconstruction procedure has several steps as follows.

1) Using the spatial-filtering technique, the deflec tion func-

tion @is measured for NO preform orientations, equally spaced

in the range (–90°, 900). For each orientation, the whole pre-

form width is scanned and the deflection is measured for ~p

values of p, with a scan-increment e (JVe is also called the num-

ber of projections).

2) The function g(z, 0) is tabulated; the array of the g(zi, flj)

is obtained from the array of the @(Pk, 19j) by the convolution

function @(p).

1) The Abel Transform Equation [5]:

1

J

m dn(p) dp
rz(r)-no=— — —

rry dp X,/’-“

2) The Marcuse Equation [7]:

(8)

(9)

We stress that (8) and (9) are intended only for use in the case

of perfectly circular profiles.

B. Practical Aspects of the Reconstruction

For the sake of simplicity we now consider only the case of

preforms but most of what is about to be said holds also for

fibers. Two situations are to be distinguished.

1) “Every-Day” Near- CircularPreforms: Here the departure

from perfect circularity, although always encountered in prac-

tice, is sufficiently small that a knowledge of the profile in only

one section is ,adequate. The reconstruction of that section,

however, must be a routine operation, by virtue of both sim-

plicity and speed. For example the deflection measurement

by the spatial-filtering technique takes about 5 min (with

1000 samples). As Marcuse’s equation needs a further 5 rein,

the complete reconstruction procedure takes therefore about

10 min (by Tektronix 4052).

2) Highly Asymmetric Preforms: Here a tomographic recon-

struction must be used and the large amount of data correspond-

ing to the projections @(p, 0) makes it essential to use a large

‘computer. The measurement time increases considerably (2 h

30 rein, for example, with 30 projections) and in addition there

is the problem of data transfer to the computer, an operation

which can take quite along time. In this second situation, there-

fore, the reconstruction is no longer required to be a routine

operation.

Let us consider the case 1) of quasi-circular preforms in more

detail: as will be shown in Sections 111and IV, the use of(9)

sometimes gives rise to an unacceptable error even in this case.

Therefore, a simplified 3-D reconstruction based on (6) would

be useful in practice.
Assuming the most common departure from circularity to

be an elliptical deformation, several attempts have been made

to extend the usefulness of (8) and (9) by transforming the

elliptically deformed profile into an “equivalent” circular one
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[6] - [8]. In Appendix B, we treat analytically the particular
case of an elliptic preform with a parabolic index profile but

the conclusions obtained are quite general and apply to any

kind of profile function j’(u) [8]. We adopt the notation of

Fig. 2(a) and consider the elliptical deformation of a circular

profile

@-n-=A f (u)

where A is the normalized index difference of the profile

and

T

x’u. ~ +‘~ [with the notation of Fig. 2(a)].

For a scan of the preform corresponding to the orientation O,

the profile reconstruction from (9) is [8]

.0 ‘Arfkj=A”%f(&)nr(r) - no

where R. = V’a2 sin2 0 + b2 COS2ti is the apparent radius of

the preform, seen in the direction 0, and where subscript r

indicates the value obtained by reconstruction.

When the preform is scanned along a principal axis, (0 = O

or 7r/2) the apparent radius corresponds to the actual one

(RO = b or a) whereas the normalized index difference A is

multiplied (or divided) by the ratio a/b [7] [if 0 = O, Ar =
A(a/b) and if O = 7r/2, A,= A(b/a)] . The orientation of the

principal axes can easily be found by observing an image of the

core as the preform is being rotated; from scans in these two

directions the ratio a/b can be evaluated and both the profile

function f(u) and the actual value of A can be determined

[7] , [8].

Using this method, elliptically deformed profiles can thus be

measured just as easily and just as quickly as those of circular

preforms without the need for using three-dimensional recon-

structions [7]. Unfortunately, the method of “equivalent

profile” cannot be extended to other kinds of deformation

and is therefore of limited use.

Owing to the explicit O-dependence of g(z, 6), each value

of O refers to a different projection in the numerical integra-

tion of (6). In theory it would thus be necessary to measure

as many projections as there are O-values considered in the

integration. However, in most practical cases the azimuthal

preform variations are always very smooth and we have applied

(5) with only a few measured deflections @(p, 0), using inter-

polated values of the convolution g(z, 6). This interpolation

technique is justified also, as is shown in Appendix A, by the

fact that (5) reduces to (9) in the ideal case of perfectly

symmetrical preforms. Interpolation provides an intermediate

solution between (9), using only one projection, and (5),

applied with a large number of projections. In most cases a

good profile reconstruction can be obtained with only three

projections. The memory requirements corresponding to three

projections are within the storage capacity of a laboratory

minicomputer.

For stronger departure from circularity more projections are

needed but, as the azimuthal variations remain smooth, the

total number of projections remain small (5-13), thus allow-

(a)

Y

4-
B (O, b)

A A
(-so) o (bOl x

1“B’ (O.-b)

(b)

Fig. 2. Core deformations considered in the simulations. (a) Elliptical
core deformation. (b) Half-elliptical core deformation.

ing moderate times for measurement and data transfer. It was

never necessary to measure more than 21 projections, even in

the extreme case of the very elliptical preform shown in Sec-

tion IV. However, it is worth noting that in the case of strong

azimuthal dependence of CVD layer structure it may, of course,

be necessary to use more projections to ensure the fine detail

of the 3-D reconstruction is not omitted. Such cases are some-

times observed for the innermost layers in multimode fiber

preforms prepared by the OVPO process.

The first decision one has to make in practice is the number

N@ of projections to use. We distinguish here three different

cases:

1) one projection is measured

}

where processing is

within the capability
2) three projections are measured of a minicomputer

3) more than three projections are measured

Sections 111and IV will determine the decision thresholds be-

tween these cases for given allowed error levels.

The second practical parameter is the scan-increment e. The

number of points at which the deflection must be known is

determined by the sampling theorem, according to which most

of the spectral power must be contained in the frequency inter-

val [- 1/2e, 1/2 e]. However, it is usually sufficient to empiri-

cally select an increment e small enough to describe sufficiently

well the smallest preform details. Practical values of e range

from 4-10 Wm.

The two previous parameters determine the time for measure-

ment and data transfer. In the reconstruction they modify only

the convolution calculation time, always very short, and have

therefore no critical influence in the total computing time.

The parameter determining the computing time for one
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point of index profile is the number NI of d-values taken in

the integration. If NI equally spaced O-values are used, the

corresponding z-variation is of the order of Az cx I rl A19 =

I rl n/NI. It appears therefbre that, for a given NI, details of

the index profile smaller than Az are missed; in other words,

the ‘reconstruction resolution is of order I rl n/NI, at a distance

I rl from the center. The resolution is thus always better near

the center, i.e., for I rl small, and it is possible to improve the

resolution by increasing NI. Near the center, a given resolution

can be obtained with a reduced NI. The resolution is, however,

limited by the accuracy of the deflection measurement and in

any case cannot be better than t,he scan increment e. Augment-

ing NI above j rl n/e increases the computing time without in-

creasing the reconstruction resolution. Practical values of NI

range from 50-500.

Any kind of interpolation routine can be used to determine

the values of g(z, 6) from the array of the g(zi, Oj); in practice,

the two-dimensional interpolation involved is best performed

by using two one-dimensional interpolations. As the points

(zi, 6j) for which the convolution g(z, 6) is known are situated

on a regular grid, a Lagrange-type interpolation can be used

[9]. The difference between two zi is equal to the scan incre-

ment e, which is always relatively small, and thus in the z

direction we have used a Lagrange interpolation involving only

three points. The difference between two 19j(equal to rr/NO) is

much larger and we have used a six-point Lagrange interpolation.

Even if the number NO of projections measured is three, it is

possible to use an interpolation formula involving six values of

6 because of the periodicity’g(z, (3)= g(z, O + n). This period-

icity can easily be demonstrated from the definition of g(z, f?)

in (7), under the assumption that the preform may be regarded

as a phase object.

III. RESULTS FOR SIMULATED PROFILES

Using numerical ray tracing, we simulate the set of deflection

functions @(p, 0) corresponding to original profiles of the

form

nz(x, y) = n; {1-2A[(~~p’+(~~]] forx<O

rz2(x, y) = n; {’-2A[(32P2+(31}‘orx>o
where we always choose

A= O.01

nl =1.5 =nO(l+A)

no = refractive index of the matching fluid

PI and p2 are power-law exponents describing the profile
deformation.

The deflection is calculated with an increment e for each of

the Ne equally spaced 0-values. The numerical integration of

(6) is performed with NI points.

Depending on the case under consideration, the reconstruc-

tion quality will be characterized by parameters chosen from

the following three.

2) Maximum index error with respect to the index-difference

nOA:

nr(x, y) - n(x, y)
(in percent)

(:,;) no A

3) Mean index error with respect to the index-difference

nOA:

mean n,(x, y) - n(x, y)
(in percent)

(X, Y) nOA

where the subscript r indicates the value obtained by recon-

struction.

We consider the effect on the reconstruction quality of the

scan-increment e, of the number NI of points in the integration

of (6) and, lastly, of the number N@ of projections. For the

latter parameter, the discussion will concern the reconstruction

degradation when using Chu’s equation (6) with only a few

projections and the limit of applicability of Marcuse’s equa-

tion for a given error level.

A. Scan-Increment e

A circular preform with parabolic index profile was assumed

(al=a2=b=lmm; pl=p2 = 1) and the deflection @(p) was

simulated with increments e ranging from 100 to 10 ~m. The

integration of (6) [which reduces in the circular case to (9)]

was performed with 441 points in order to ensure that the

accuracy was limited by .s, and not by Nz being chosen too small

(NI = 441> max I rl rr/e~314). The resulting values of the

maximum and of the average index error are shown in Table 1.

In [1] measurement data are regarded as a band-limited sig-

nal with bandwidth S2= 5/core radius. To satisfy the sampling

theorem we must have L? = 5/core radius< 1/2~ which gives a

minimum number of 20 measurements across the preform

cross section [ 1] . Twenty measurements correspond here to

e = 100 #m and Table I shows the increased accuracy obtained

when taking more than that minimum number.

B. Number N1 of Integration Points

We consider the circular preform of Section III-A but the scan-

increment is fixed now at e = 10 ~m, corresponding to 200

samples across the preform cross section. Table II shows the

maximum and the average index error found for arbitrary values

of Nz ranging from 21 to 441. The reconstruction accuracy is

no longer improved for NI> n. 1 mm/10P= 314, as indicated

in Section II, and has ‘almost achieved its limit value for N] ~

100.

C. Effect of Interpolations in Chu 5 Equation

The number NO of projections to be measured is determined

by the rate of the azimuthal variations; as illustrations we con-

sider the four following cases of departure from a circular

preform.

1) Elliptical Core Deformation:

al = a2=a<b

Ar-A b-a
1) Index-difference error: ~ (in percent) deformation rate = e = ———

b .
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TABLE 1
EFFECTOFTHE SCAN-INCREMENTc ONTHERECONSTRUCTIONACCURACY.

THE ERRORSAREEXPRESSEDASASA PERCENTAGEOFTHE INDEX

I

I la

60

40

10

DIFFERENCEnOA.

143xinn.lm

index-error
(%)

4.8

2.8

1.4

0.7

0.43

Average
index-e-

(%)

2.2,

1.5

0.9

0.5

0.24

TABLE II
EFFECTOFTHENUMBERNI OFINTEGRATIONPOINTS ON THE RECONSTRUCTION

ACCURACY. THE ERRORSAREEXPRESSEDASA PERCENTACEOF
THE INDEX DIFFERENCE nOA.

‘I

21

63

105

147

231

273

357

399

441

P!admum

index-error
(%)

1.5

0.46

0.45

0.44

0.436

0.43

0.43

0.43

0.43

Average

tidex-emor
(%)

1.1

0.25

0.245

0.241

0.241

0.241

0.241

0.241

0.241

2) HalfElliptical Core Deformation:

pl=p~=l

az=b

ul=a<b

b-a
deformation rate = e = —

b“

3) Elliptical Index Deformation:

pl=pz=p<l

al =az=b

deformation rate = e = 1- p.

4) HalfElliptical Index Deformation:

p~=l

p~=p<l

al=az=b

deformation rate = e = 1- p.

Cases 1) and 2) are illustrated in Fig. 2(a) and (b), respectively.

As stressed in Section II, we have three reconstruction pos-

sibilities: 1) for very small deformations, use of Marcuse’s equa-

tion (9); 2) for small deformations, use of(6) with only three

projections; 3) use of (6) with more than three projections.

Reconstructions 1) and 2) are within the capability of a

minicomputer.

In this section, we illustrate cases 1) and 2) and consider the

degradation suffered by the reconstruction when the N] points

needed in the integration of (6) are obtained from a reduced

number Ne of projections. To that end, the deflection func-

tions $(P, 0) corresponding to the four above-mentioned de-

formations were simulated with a scan-increment e = 10 pm

and with No = 21. By selecting, from that setof21 projections,

every third and every seventh projection, we obtained the sets

corresponding to No = 7 and Ne = 3. NI was taken equal to

21 X 21 =441 and the number of interpolations between each

projection was

21 for No ’21

63 for No = 7

147 for No = 3.

The interpolation routine used was described at the end of

Section II.
For deformations 1-4, Table 111 shows the maximum

normalized error we found as a function of the deformation
rate and for No = 21, 7, 3: the results for No = 21 and 7 are

rather close and an enhanced degradation occurs only in the

case Ne = 3. The nonsymmetrical deformations 2 and 4 amplify

the degradation more than the symmetrical ones 1 and 3.

If one tolerates a maximum index difference error of 5 per-

cent, for example, then Table III shows that the minicomputer

reconstruction with iVe = 3 can be used for core ellipticities

up to 16 percent and for index deformations in the order of

20 percent.

D. Applicability of Marcuse’s Equation

We turn now to the case of very small deformations and

investigate the limit of applicability of (9). The deflection

function O(p) associated with a perfectly circular preform is

an antisymmetrical function of p (o(p) = -0(- p)) and (9) uses

only the values of @for p >0. In the measurement process,

however; the whole preform is scanned and the deflection is

obtained for values of p both positive and negative. In practice,

(9) can thus be applied successively to the left and right half

of the deflection (-~(p)) with p <0 and ~(p) with p >0,

respectively) and two index profiles are obtained: they only

coincide in the case where @ is a strictly antisymmetrical

function of p. As will be shown, the discrepancy between

these two profiles depends on the preform orientation for

which the deflection was measured; taking the average of these

two profiles is justified to some extent in Appendix A and

can sometimes yield better results. There are cases, however,

where the two profiles are exactly identical but do not cor-

respond, for all that, to the actual one.
To express the reconstruction quality, we had to choose a

parameter having the same definition for the circular profile,

given by (9), and the actual deformed one; hence we consider

here only errors in index difference.
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TABLE III
ERRORSINCURREDBY INTERPOLATIONIN CHU’S EQUATION FOR

RECONSTRUCTION (5). FOUR CASES OF BASIC DEFORMATION ARE

CONSIDERED. THE ‘ERRORS ARE AGAIN NORMALIZED TO THE INDEX

DIFFERENCE nOA.

elliptical half-elliptical elliptical half-elliptical
mre core index index

deformation deformation defomatim defonmtim—

‘B % ‘e %
21 7 3 21 7 3 21 7 3 21 7 3

0.5 0.75 1.2 0.6 1.1 2 0.5 0.52 1.16 0.5 0.55 1.25

0.6 0.9 2 0.7 1.8 4.2 0.5-2 0.68 2 0.54 0.7 2.2

0.7 1.1 3.3 0.8 2.7 7 0.56 0.88 2.76 0.6 1 3

0.8 1.5 4.8 1.0 3.8 10 0.6 1.32 3.72 0.7 1.5 4.2

0.95 2.4 7 1.3 5 13.8 0.65 1.84 5 0.84 2.3 6

&

TABLE IV
ERRORSIN MARCUSE’S RECONSTRUCTION FOR FOUR CASES OF

DEFORMATION. COLUMN I: MAXIMUM ERROR. COLUMN II:

MAXIMUM ERROR WHEN THE AVERAGE INDEX DIFFERENCE

N CONSIDERED.

elliptical half-elliptical elliptical half -elliptical
core core indes index

defonm=.ticm de fonmticm de fonmticm de fomwtia

9 I II I II I II I II
!?

J 4% 4.16 4.16 4.16 2.o8 4.4 4.4 4.4 2.2

# 8% 8.64 8.64 8.64 4.32 9.4 9.4 9.4 4.7
$
0 12% 13.44 13.44 13.44 6.72 15 15 15 7.5

Table IV shows the results of a simulation for the deforma-

tions 1-4. The deflection was calculated for (1-values in the

interval (- 90°, 90°) and for each O Marcuse’s equation was

applied to the left and the right half of the deflections @(p, L9),

thus giving two index differences AL and AR. Table IV re-

ports the maximum error in index difference together with the

error made when the index difference (AL + AR )/2 of the aver-

age profile is considered. Considering the average profile im-

proves the accuracy by a factor of two with nonsymmetrical

deformations 2 and 4 but does not provide any improvement

in the symmetric cases 1 and 3. To explain this effect, we

describe the elliptical and the half-elliptical core deformation

in more detail.

In the case of the elliptical core deformation of a small nu-

merical aperture preform, the deflection function @(p, 6) is

nearly antisymmetrical for any preform orientation:

O(P, 6)=-4(-P, 6) I? ’e.

For each 6, two profiies are obtained by the application of

(9) to the two halves p <0 and p >0 of the deflection; they

are identical in this particular case and taking the average does

not reduce the error, as is shown in Table IV. From Appendix

B, the error in index difference for this case can be expressed

as

A,-A
error (A) = ~ = e cos 26’+e2 COS6’COS36’+ 0(e3)

(lo)

=ecos2d’ (to order e2 ) (11)

12

8

4

0

-4

-8

-12

SCAN OIRECTION e

(b)

Fig. 3. Error caused by the use of Marcuse’s equation in case of a core
deformation, as a function of the scan-direction 0‘. (a) Elliptical core
deformation. (b) Half-elliptical core deformation. Labeling parameter
indicates the deformation rate.

where e = deformation rate = (b - a)/b, and O‘ is the scan-direc-

tion, as is shown in Fig. 2(a).

The error distribution as a function of the scan direction 6‘

is shown in Fig. 3(a). We stress that the maximum error occurs

for cos 26’=* 1 corresponding to scans along the principal axis

of the ellipse; a scan along the minor axis, for which 0 = O or n,

yields too high an index difference (error (A) ~ +e percent)

whereas a scan along the major axis (6’= *7r/2) yields too

small a result (error (A)s - e percent). A scan direction of
6‘ = frr/4 gives the right answer (to order e2 ).

Similarly, the error distribution corresponding to a half-

elliptical core deformation is shown in Fig. 3(b). Here the

maximum error corresponds to a scan along A ‘OA [Fig. 2(b)].

The profile reconstructed from the scan along OA (0’= O) has

the actual index difference whereas ‘the use of the scan along

OA’(0’ = trr) yields too high a result (with an error +e percent);

in the case of a scan along A’OA, taking the average therefore

improves the accuracy by a factor of exactly two. Other

results are found for other scan directions (no improvements,

for example, with a scan along B ‘OB) but the maximum error

when averaging corresponds always to the scan along A ‘OA,

which explains the improvement by the factor of exactly two

observed in Table IV.

If one tolerates an arbitrary error level of 5 percent, Table IV

shows that Marcuse’s equation can be used for deformations

of any kind up to about 5 percent. For the two asymmetric

deformations 2 and 4, the use of averaging extends that limit

to 8 percent.

It is possible to extend this method of averaging to more

than two profiles by scanning the preform in several directions.

In the case of an elliptical core deformation, for example,

(11) shows that taking the average of the results corresponding

to the two principal axes of the ellipse (0’= O and 6‘ = 7r/2)

gives the right result (to order e2 ). We must stress, however,
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that if one wants to measure more than one projection, the

best utilization of the data is to employ them in a reconstruc-

tion with Chu’s equation (Section III-C).

IV. RESULTS FOR MEASURED PROFILES

Four preforms are used to illustrate the several points stressed

in the two previous sections; the first three, A, B, and C, are

quasi-circular and the fourth, D, is highly elliptical. The com-

position of these preforms are as follows:

A: fluorophosphosilicate cladding, germanosilicate core

B: phosphosilicate cladding, germanosilicate core

C: borosilicate cladding, germanosilicate core

D: fluorophosphosilicate cladding, germanosilicate core.

For more detail, we show an index profile section of each

preform [Fig. 4(a)- (d)] together with a three-dimensional

display; the core and the complete cladding of preform A are

shown in Fig. 5(a) but, for preforms B and C, we have only

shown a view of the core and of the four inner cladding-layers

[Fig. 5(b) and (c)]. The core of the highly elliptical preform is

displayed in Fig. 5(d) and the section of Fig. 4(d) corresponds

to the major axis.

Following the progression of Section III, we consider succes-

sively the choice of the scan-increment e, the number NI of in-

tegration points in (6), and the projection number Ne. The

discussion concerning NO is devoted mainly to the reconstruc-

tion degradation when using Chu’s equation with only a few

projections and to the applicability of Marcuse’s equation.

A. Scan-Increment

In practice, asmentioned in Section II, e is chosen empirically,

the rule being to describe the preform details with a sufficient

number of samples. Quite arbitrarily we have always taken at

least ten samples per detail in our measurements.

The deflection function of preform B is shown in Fig. 6 for a

value of O and, in this case, the layer structure has a periodicity

of about 50 pm, near the cladding-substrate boundary. To obey

our rule, the scan-increment e was fixed at e = 4.8 vm. For

preform A, which has no layer-structure, e = 10 #m was taken.

Preform C was measured with e = 4 ~m and the highly elliptical

one, D, with e = 6 pm. We have measured a large number of

other preforms and have always selected the scan-increment e

in the range 4-10 pm.

B. Number NI of Integration Points

As pointed out in Section H, the resolution, at a distance I rl

from the center, is in the order of magnitude of Az = I rl n/NI;

as we concluded there, the reconstruction is always better near

the axis origin, corresponding to small values of I r 1. A compari-

son of Fig. 7(a), (b) and Fig. 5(a) illustrates the phenomenon;

preform A is displayed in each plot and the only different param-

eter is NI. Preform A was measured with 13 projections and in
Fig. 7(a) Nr = 13 only: we observe waves along 13 diameters

corresponding to the 13 equally spaced preform orientations

of the deflection measurement. In Fig. 7(b) and Fig. 5(a) we

have increased NI by interpolation: in Fig. 7(b), NJ = 13 X 3 =

39 and the radial waves are only present in the substrate region.
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Fig. 4. Index profiie section of preforms A (a), B (b), C (c), and of the
major axis of preform D (d). The profiies of preforms B and C were
reconstructed with only three projections.

In Fig. 5(a) where NI = 13 X 9 = 117, the waves have entirely

disappeared. These three figures illustrate clearly the kind of

spurious wave distribution which arises when the integration

of (5) is not performed with a sufficient number NI of points;

they confirm also that the degradation is always smaller near

the center.
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Fig. 5.

(a)

(b) (d)

Three-dimensional display of preforms A (a), of the core and of the four inner cladding layers of preforms B (b),
and C (c), and of the core of preform D (d).

I
-4 -2 0 2 4

DISTANCE FROM THE CENTER (m)

Fig. 6. Deflection function of preform B.

Reciprocally, for the reconstruction of index points situated

near the center, a smaller number Nz can provide the desired

accuracy. Fig. 5(b), (c), and (d), which only display the core

region of preforms B, C, and D, were obtained with Nz = 21 X

11 =231 whereas the sections of Figs. 4(b), (c), and (d) were

calculated with NI = 21 X 19 = 399 (preforms B, C, and D

were all measured with No = 21 projections).

C. Effects of Interpolation in Chu ’sEquation

In this section and the next one we come to the problem of

choosing the reconstruction algorithm. In Section II we have

distinguished three possibilities and the simulations of Section

HI have determined decision thresholds between them (for an

arbitrary maximum error level of 5 percent). What happens in

practice will be illustrated with preforms B, C, and D (all mea-

sured with 21 projections).

In the case of measured preforms we no longer know the ex-

act profile, as was the case for the simulations. We assume the

exact profile to be provided by the reconstruction with the 21

projections and all the index errors are related to that profile,
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(a)

(b)

Fig. 7. Illustration of the effect of taking too small a number NI of tl-
values in the integration of (6) for preform A. (a) No interpolation,
NI= 13. (b) NI= 13X3=39.

taken as reference. To give meaning to the comparison between

the profiles obtained with 3, 7, and 21 projections, and to

eliminate the effect of the experimental conditions, the pre-

forms were measured only once and the sets of 3 and 7 projec-

tions were obtained from the 21 in the way described in Sec-

tion III-C.

Table V compares the reconstruction with 3 and 7 projec-

tions for preforms B and C. The index difference error, the

maximum index error and the average index error, expressed

in percent, are normalized by the preform index difference

(for preform B, A = 0.00853 and for preform C, A = 0.00665).

For an arbitrary 5 percent level of maximum error, the 3

projections minicomputer reconstruction can be used with

preform B but not with preform C’. We have tried to relate

the results of Table V to the simulations of Section III and

have attributed the reconstruction degradation to an index-

deformation. The cores of preforms B and C were found to be

perfectly circular but, as is seen in the three-dimensional dis-

plays of Fig. 5(b) and (c), some kind of index asymmetry

occurs. The effect is very pronounced for preform C and ex-

plains the enhanced degradation we have observed. In the two

TABLE V
COMPARISON OF RESULTS FROM CHU’S EQUATION WHEN USING 7 AND 3

PROJECTIONS, ASSUMING THE RSSULT WITH 21 PROJECTIONS CORRESPONDS

TO THE ACTUAL PROFILE

IJIdex-dif fe.rence M3.xilmm Average

error (%) IIIdex-dif fermce IIIdex-dif f ercnce

-r (%) en-or (%)

7 3 7 3 7 3

B 0.14 0.24 2.5” 3.7 0.42 0.44

c 1 1.8 3.6 5.8 0.65 0.84

cases of preforms B and C, the degradation does not distort

the profile-shape. As a matter of fact, the index sections of

Figs. 4(b) and (c) were obtained with 3 projections and only a

very small loss of resolution appears in the layer structure,

when compared with the 2 l-projection reconstruction (not

shown here). This is obviously not the case for the highly

elliptical preform of Fig8. 4(d) and 5(d). Here the reconstruc-

tion with 7 projections gives rise to a maximum error of about

30 percent and the profile shape obtained with 3 projections

is no longer recognizable.

D. Applicability of Marcuse ’sEquation

We refer the reader to Section III-D where the characteristics

of Marcuse’s equation have been stressed and we present here

the results obtained. For the reason given in Section III-D, we

consider only the errors made in the index difference and in

the index at the center of the core; the supposed exact values

of these two parameters were obtained from Chu’s reconstruc-

tion with 21 projections (as before, the errors are normalized

by the index difference of the preform). We consider again

the cases of preforms B and C; Table VI shows the maximum

error made in the results together with the improvement pro-

vided by the averaging technique described in Section III-D.

In column I only one projection is measured and the average is

performed on the results obtained from the two halves, p <

0 and p >0, of the deflection. In columns II and HI, 3 and

7 projections are measured and the average is thus made on

6 and 14 quantities, respectively.

From Table VI, we see that the preforms B and C do not

satisfy our arbitrary accuracy requirement of 5 percent but

column I shows that, in the case of averaging, preform B does.
When the average involves three or seven projections (columns

H and III), the error decreases accordingly. A comparison with

the results of Table V stresses the fact that, for three projec-

tions the resulting error is three (preform C) to ten (preform

B) times larger than if these three projections had been used in

a reconstruction with Chu’s equation.

For the routine measurement of “every-day” near-circular

preforms, the systematic use of Chu’s equation with three

projections thus seems very tempting if one is only interested
in the accuracy achieved. However, the limit of applicability

of (9) can be extended if a higher error level is tolerated and

if one is mainly concerned with the speed of the calculations

[5 min with (9)]. As it may be a determining factor in the

choice of the algorithm, we turn now to the reconstruction

time by (6) and (9), As mentioned above, the calculation of
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TABLE VI
ACCURACYOF MARCUSE’SEQUATIONAND EFFECTS OF AVERAGING

COLUMN I: 1 MEASURED PROJECTIONAVERAGE OF AL AND AR
COLUMNH: 3 MEASUREDPROJECTIONS,AVERAGEOF 6 PROFILES
COLUMNIII: 7 MEASUREDPROJECTIONS,AVERAGEOF 14 PROFILES

M3xmm error
~

kfaximm enmr m A when averaging
preform A

I II 111

B 8.4 1.5 1.2 0.4
n (0,0)

c 3.2 5.2 4.5 1.2

B 10 3.8 2.8 0.4

A
c 14.8 5.6 4.9 1

the convolution g(z, 6) in (6) is performed very quickly and

all the computing time is spent in the integration. The integra-

tion needs interpolated values of g(z, (3) both in the z and in

the O-direction, whereas (9) uses the deflection values without

any interpolation. As the number of integration points are

nearly identical in both equations, the ratio of the computing

times by (9) and (6) is believed to be the ratio of the access

times for an interpolated value of g(zj 6) and a value of o(p).

In our case, for the interpolation routine described at the end

of Section II, this ratio was evaluated to be about 30. The

implementation of Chu’s reconstruction would take therefore

about 2 h 30 min on Tektronix 4052 (instead of 5 rein). Ob-

viously, it is possible to reduce that time by using an interpola-

tion involving less than 18 points. To conclude this section, we

would like to stress that during the calculation the computer

does not need any external intervention and thus a long com-

puting time is perhaps not too serious a problem in practice.

V. CONCLUSIONS

This paper has considered the practical implementation of

the 3-D reconstruction of preform index profiles from the

knowledge of the deflection function. The spatial filtering

technique of measuring the deflection function has been used

when the case of real preforms was considered. We have in-

vestigated the influence on the reconstruction quality of the

scan increment e, the number N1 of points in the numerical

integration involved, and the number N@ of projections used.

Special emphasis has been placed on N@ as this parameter de-

termines the algorithm used in the reconstruction. The impor-

tance of using a sufficient number of points for the integration

involved in preform profile reconstruction has been demon-

strated with both simulated and measured profiles. The sys-

tematic use of interpolation enables the optimum number of

integration points to be obtained from the data corresponding

to a few preform projections, The storage requirements cor-

responding to three projections are within the memory capacity

of a laboratory minicomputer, thus avoiding the problem of

data transfer to a large computer. The procedure therefore

provides an efficient tool in the routine evaluation of near-
circular preforms. For highly asymmetric preforms however,

as we have shown in an example, no simplified solution is

possible and a complete tomographic reconstruction must be

used.

APPENDIX A

RELATION BETWEEN CHU’S AND MARCUSE’S EQUATIONS

In [1] Chu expresses the reconstruction equation in the form

of(2) and a convergence problem arises when p = r sin (IJ - 0),

which always happens in the p-integration (for r < preform

radius). On the other hand, Chu recognizes a Hilbert trans-

form in the p-integration [1]:

J+-an(p, e) UI
g(z, e) =

-m ap z-p”
(Al)

All convergence problems disappear when one considers the

rigorous formula for the Hilbert transform which gives

{J+maq(p, 0) dp
g(z, e) = Vp

-m ap }z-p “
(A2)

The notation Vp { } signifies that the Cauchy principal part of

the integral in the bracket is to be taken.

We can now derive Marcuse’s equation (9) from Chu’s equa-

tion (5) for the case of a perfectly circular preform in which the

explicit 0-dependence of@ (p, 0) disappears.

In this case, (5) reduces to

n(r) -7’20

no
=-*j~d6vp{~j@(p) rsi$+P}

(A3)

or, by interchanging the p and O integrations,

+-J
n(r) - no 1

–J {J

+ 7r~

@(P) dp VP
d6=-

no 21r2 _m }_np rsintl+p “

(A4)

We must evaluate the Cauchy principal part of the integral 1:

J
+ iT/2

dtl

J

+1

I=
2 dt.

_np rsin O+p
= 1[-1,+11 (A5)

.1 pt2+2rt+p

with t = tan 6/2.
From the relative values of I p I and r, we distinguish three

cases.

1) r<[pl

I = sgn (p

The function has no poles and

‘rr
/ . . where sgn (p) = +1 ifp> O

VP. - r.

.sgn(p) =-l if p<O.

2) r = p: There is a double pole at t = -1, and I= m. This

case can be contained in the analytical continuation of case 1).

3) r > I p I: There are two poles tl + t= and to ensure con-

vergence we must divide the integration interval into three and
consider the integral family {Ia }a~ma

I& =1[-1, tl -a!] +~[f, +a!, t,-a] +~[t2+LY, 1].

The principal part of I corresponds to the limit of the {Ia}a

when LYdecreases toward O and the result is lim Ia = O
Q+13
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As a conclusion, (A4) reduces to

In the case of a perfectly circular preform, we have O(p)=

-@(-p) and (5) reduces to Marcuse’s equation (9). The same

derivation shows that (9) reduces to (8). In the case of a quasi-

circular preform, the deflection is no longer antisymmetric but

(A6) justifies, to some extent, making an average of the pro-

files obtained when (9) is applied to the left and the right sides

of the deflection.

APPENDIX B

ELLIPTICAL PREFORM WITH A PARABOLIC PROFILE
.. .. . . .. . . .
With the assumption 01

length difference v(p, 19)

lated by (4):

an(p, 0)

ap
‘%@(P, o

small numerical aperture, the pattl-

and the deflection @(p, 0) are re-

(Bl)

We apply this approximate relation to the case of an ellipti-

cal preform with parabolic index

n(x, y) = no
{l+Ak [(Y+(N)}’

= no,

and obtain

(b(p,e)=J n(x, y) - no

ap AL?’ ‘o
ds

2

() ()

2

forz+~<l
a

() ()

2 2

forz+$>l
a

‘AwM-(a2
for lpl<lle~

(B2)

=0 for Ipl>l?o 1

where R. = ~az sinz (3+ bz COS2 O is the apparent radius when

the preform is seen in the direction 0 [notation as in Fig. 2(a)],

and Al?’ is the straight path of Fig. 1 (as an approximation

for the actual one All).

The 6-dependence occurs only via the intermediary of the

apparent radius R@. R@ enters as scaling factor for the distance

p and in the dimensionless factor ah/R ~, which multiplies the

index difference A. These observations coincide with the con-

clusions of [7] and [8]. The circular preform “equivalent” to

an elliptically deformed one has a radius equal to Re and an in-

dex difference equal to Aab/R ~.

Marcuse’s equation (9) applied, for a particular O, to the de-

flection @(p, 6) expressed by (B2) yields the following circular

profile:

n(r) - no

()
=’& 1-<.

no R~ R;

The error in index-difference is then

error (A) = K - 1
R;

(B3)

(B4)

which, with the notation of Section III can be expressed as

error(A) = e cos 2f3’+ ez COSO’COS30’+ 0(e3) (B5)

where e = (b – a)/b and 0‘ is the scan-direction.

The error distribution of (B5) is shown in Fig. 3(a).
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Propagation in Doubly Clad Single-Mode Fibers
MICHEL MONERIE

Abstract-General propagation properties and universal curves are
given for doubly clad single-m6de fibers with inner cladding index higher
or lower than outer cladding index, using the two pararneterx inner
cladding/core radii ratio and inner cladding/core index differences ratio.
LPO1, LP11, and LP02 cutoff conditions are examined. It is shown
that dispersion properties largely differ from the singly clad single-mode
fiber case, leading to large new possibilities for low-loss dispersion-free

fibers at any wavelength between 1.3 and 1.7 pm.

I. INTRODUCTION

T HIS paper results from calculations made on doubly clad

fibers. We observed experimentally that the cutoff prop-

erties of LPI 1 and LP02 modes did not always match the

values predicted by the weakly guiding singly-clad fiber theory

and calculated with data issued from other experiments (re-

fracted near-field pattern and preform measurements). The-

oretical results on doubly clad fibers with depressed inner

cladding have been previously published [1] - [3], but we

experimentally study low-index inner cladding and high-index

inner cladding as well. We then wanted to extend the theory

to all types of doubly clad fibers. Some developments of our

calculations led us to pay more attention to the dispersion

properties of such structures. Kawakami and Nishida [1] al-

ready reported some features of the anomalous dispersion of

W-type fibers, principally the theoretical possibility to cancel
the glass dispersion at a wavelength of 1 pm, but with fiber,

specifications hardly very obtainable in practice. However,

Manuscript receivedAugust 19, 1981.
The author is with the Centre National d’Etudes des ,T616communica-

tions, Lannion, France.

we show here that another part of the dispersion curves of

W-type fibers allow us to obtain free dispersion operation with

very low doping levels, contrary to singly clad fibers which

require high doping levels. Now it has been demonstrated that
particular attention should be paid to minimize the amount of

germanium dopant required for any fiber design, in order to

reduce loss [4]. This leads us to propose a new low-loss fiber

structure with zero total dispersion at any wavelength between

1.3 and 1.7 Km.
.,

The purpose of this paper is then to study the inner cladding

effect on the propagation properties of the first guided modes

of doubly clad fibers: cutoff, normalized propagation param-

eter, dispersion properties. We solve numerically the Maxwell

equations without trying to find analytical formulas approach-

ing the exact solution. However, as far as possible we give the

physical meaning of some unusual results, especially when

they differ from those of the singly clad fiber case.

Section II of this paper is devoted to the mathematical for-

mulation of the problem: field solutions, dispersion equation,

and its resolution.

Section III deals with results concerning the cutoff condi-

tions for LPO1, Ill 1, and LP02 for some practical cases. We

show that a very simple general formula gives the condition for

a n,onzero LPO 1 cutoff in the case of depressed inner cladding.

Universal curves giving the normalized propagation param-

eter B are shown in Section IV for various cases of doubly clad

fibers. We deduce from these data the @Ol modal dispersion

properties of these fibers and review the possibility to obtain

low-loss dispersion-free fibers in the range 1.3 to 1.7 Km.
We study the structure shown in Fig. 1: a weakly guiding

fiber has a core radius a and a core refractive index ?rI. The
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